数学函数
请注意:
下文中的一些示例引用自 ClickHouse 社区文档 并经过一定修改确保可以在 ByteHouse 中正常使用。
COVAR_POP
Calculates the value of Σ((x - x̅)(y - y̅)) / n
.
Note: This function uses a numerically unstable algorithm. If you need numerical stability in calculations, use the covarPopStable
function. It works slower but provides a lower computational error.
Syntax
covarPop(x, y)
Arguments
x
– The set of number.y
- The set of number.
Returned value
- The population covariance.
Type: Float64
Example
CREATE TABLE test.test_covarPop(days_employed Int32, salary Int32) ENGINE = CnchMergeTree ORDER BY days_employed; -- create sample table
INSERT INTO test.test_covarPop(days_employed,salary) VALUES(300,3000),(600,4000),(900,4500),(1200,4800),(1500,5000); -- insert data to table
SELECT covarPop(days_employed,salary) FROM test.test_covarPop; -- find out the population covariance for days employed and salary
Result:
┌─covarPop(days_employed, salary)─┐
│ 2.88e+05 │
└─────────────────────────────────┘
COVAR_SAMP
Calculates the value of Σ((x - x̅)(y - y̅)) / (n - 1)
.
Note:This function uses a numerically unstable algorithm. If you need numerical stability in calculations, use the covarSampStable
function. It works slower but provides a lower computational error.
Syntax
covarSamp(x, y)
Arguments
x
– The set of number.y
- The set of number.
Returned value
- The sample covariance, when
n <= 1
, returns +∞.
Type: Float64
Example
CREATE TABLE test.test_covarSamp(days_employed Int32, salary Int32) ENGINE = CnchMergeTree ORDER BY days_employed; -- create sample table
INSERT INTO test.test_covarSamp(days_employed,salary) VALUES(300,3000),(600,4000),(900,4500),(1200,4800),(1500,5000); -- insert data to table
SELECT covarSamp(days_employed,salary) FROM test.test_covarSamp; -- find out the sample covariance for days employed and salary
Result:
┌─covarSamp(days_employed, salary)─┐
│ 3.6e+05 │
└──────────────────────────────────┘
acos
The arc cosine.
Syntax
acos(x)
Arguments
x
– The radians.
Returned value
- Return radians.
Type: Float64
Example
SELECT acos(-1);
Result:
┌─ACOS(-1)──────────────┐
│ 3.141592653589793e+00 │
└───────────────────────┘
asin
The arc sine.
Syntax
asin(x)
Arguments
x
– The radians.
Returned value
- Return radians.
Type: Float64
Example
SELECT asin(-1);
Result:
┌─asin(1)────────────────┐
│ 1.5707963267948966e+00 │
└────────────────────────┘
atan
The arc tangent.
Syntax
atan(x)
Arguments
x
– The radians.
Returned value
- Return radians.
Type: Float64
Example
SELECT atan(-1);
Result:
┌─atan(-1)───────────────┐
│ -7.853981633974483e-01 │
└────────────────────────┘
cbrt
Accepts a numeric argument and returns a Float64 number close to the cubic root of the argument.
Syntax
cbrt(x)
Arguments
x
– The number.
Returned value
- The root of the argument.
Type:Float64
Example
SELECT cbrt(8)
Result:
┌─cbrt(8)─┐
│ 2e+00 │
└─────────┘
ceil
Returns the smallest round number that is greater than or equal to x
. In every other way, it is the same as the floor
function (see above).
Syntax
ceil(x[, N]), ceiling(x[, N])
Arguments
x
– The number.N
—decimal-places
, An integer value.
Returned value
- The round number.
Type: Float64
Example
SELECT ceil(1.99,2);
Result:
┌─ceil(1.99, 2)─┐
│ 1.99e+00 │
└───────────────┘
other example:
SELECT ceil(1.99,1);
Result:
┌─ceil(1.99, 1)─┐
│ 2e+00 │
└───────────────┘
ceiling
Returns the smallest round number that is greater than or equal to x
. In every other way, it is the same as the floor
function (see above).
Syntax
ceil(x[, N]), ceiling(x[, N])
Arguments
x
– The number.N
- The integer of rounding decimal place.
Returned value
- The round number.
Type: Float64
Example
SELECT ceiling(1.99,2);
Result:
┌─ceil(1.99, 2)─┐
│ 1.99e+00 │
└───────────────┘
other example:
SELECT ceiling(1.99,1);
Result:
┌─ceil(1.99, 1)─┐
│ 2e+00 │
└───────────────┘
cos
The cosine.
Syntax
cos(x)
Arguments
x
– The radians.
Returned value
- Return radians.
Type: Float64
Example
SELECT cos(pi())
Result:
┌─cos(pi())─┐
│ -1e+00 │
└───────────┘
erf
The error function erf(x)=2√π∫x0e−t2dt erf(x)
.
Note: If ‘x’ is non-negative, then erf(x / σ√2)
is the probability that a random variable having a normal distribution with standard deviation ‘σ’ takes the value that is separated from the expected value by more than ‘x’.
Syntax
erf(x)
Arguments
x
– The number.
Returned value
- The probability.
Type: Float64
Example
SELECT erf(3 / sqrt(2));
┌─erf(divide(3, sqrt(2)))─┐
│ 9.973002039367398e-01 │
└─────────────────────────┘
Note: three sigma rule
erfc
The complementary error function follows the formula: erfc(x) = 1 − erf(x).
Accepts a numeric argument and returns a Float64 number close to 1 - erf(x), but without loss of precision for large x
values.
Syntax
erfc(x)
Arguments
x
– The number.
Returned value
- The probability.
Type: Float64
Example
SELECT erfc(3 / sqrt(2));
┌─erfc(divide(3, sqrt(2)))─┐
│ 2.6997960632601913e-03 │
└──────────────────────────┘
Note: three sigma rule
exp
Accepts a numeric argument and returns a Float64 number close to the exponent of the argument.
Syntax
exp(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: Float64
Example
SELECT exp(1);
Result:
┌─exp(1)────────────────┐
│ 2.718281828459045e+00 │
└───────────────────────┘
exp10
Accepts a numeric argument and returns a Float64 number close to 10 to the power of x
.
Syntax
exp10(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: Float64
Example
SELECT exp10(3);
Result:
┌─exp10(3)─┐
│ 1e+03 │
└──────────┘
exp2
Accepts a numeric argument and returns a Float64 number close to 2 to the power of x
.
Syntax
exp2(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
calculating
Type: Float64
Example
SELECT exp2(3);
Result:
┌─exp2(3)─┐
│ 8e+00 │
└─────────┘
floor
Returns the largest round number that is less than or equal to x
. A round number is a multiple of 1/10N, or the nearest number of the appropriate data type if 1 / 10N isn’t exact.
-
N
is an integer constant, optional parameter. By default it is zero, which means to round to an integer. -
N
may be negative. -
x
is any numeric type. The result is a number of the same type.
For integer arguments, it makes sense to round with a negative N
value (for non-negative N
, the function does not do anything).
If rounding causes overflow (for example, floor(-128, -1)), an implementation-specific result is returned.
Syntax
floor(x[, N])
Arguments
-
x
– The number. -
N
– round to an integer
Returned value
- The result of calculation.
Type: Float64
Example
SELECT floor(123.45, 1);
Result:
┌─floor(123.45, 1)─┐
│ 1.234e+02 │
└──────────────────┘
other example:
select floor(123.45, -1);
Result:
┌─floor(123.45, -1)─┐
│ 1.2e+02 │
└───────────────────┘
intExp10
Accepts a numeric argument and returns a UInt64 number close to 10 to the power of x
.
Syntax
intExp10(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: UInt64
Example
SELECT intExp10(3);
Result:
┌─intExp10(3)─┐
│ 1000 │
└─────────────┘
intExp2
Accepts a numeric argument and returns a UInt64 number close to 2 to the power of x
.
Syntax
intExp2(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: UInt64
Example
SELECT intExp2(3);
Result:
┌─intExp2(3)─┐
│ 8 │
└────────────┘
lgamma
The logarithm of the gamma function.
Syntax
lgamma(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: Float64
Example
SELECT lgamma(3);
Result:
┌─lgamma(3)─────────────┐
│ 6.931471805599453e-01 │
└───────────────────────┘
ln
Accepts a numeric argument and returns a Float64 number close to the natural logarithm of the argument.
Syntax
ln(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: Float64
Example
select ln(2.7182818)
Result:
┌─ln(2.7182818)─────────┐
│ 9.999999895305024e-01 │
└───────────────────────┘
log10
Accepts a numeric argument and returns a Float64 number close to the decimal logarithm of the argument.
Syntax
log10(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: Float64
Example
SELECT log10(3);
Result:
┌─log10(3)───────────────┐
│ 4.7712125471966244e-01 │
└────────────────────────┘
log2
Accepts a numeric argument and returns a Float64 number close to the binary logarithm of the argument.
Syntax
log2(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: Float64
Example
select log2(3);
Result:
┌─log2(3)───────────────┐
│ 1.584962500721156e+00 │
└───────────────────────┘
pi
Returns a Float64 number that is close to the number π.
Syntax
pi()
Arguments
- N.A
Returned value
- The value of π.
Type: Float64
Example
SELECT pi();
Result:
┌─pi()──────────────────┐
│ 3.141592653589793e+00 │
└───────────────────────┘
pow
Takes two numeric arguments x
and y
. Returns a Float64 number close to x
to the power of y
.
Syntax
pow(x, y)
Arguments
x
– The number.
Returned value
- The result of calculation.
Type: Float64
Example
SELECT pow(2, 3);
Result:
┌─pow(2, 3)─┐
│ 8e+00 │
└───────────┘
power
Takes two numeric arguments x
and y
. Returns a Float64 number close to x
to the power of y
.
Alias:pow
round
Rounds a value to a specified number of decimal places.
The function returns the nearest number of the specified order. In case when given number has equal distance to surrounding numbers, the function uses banker’s rounding for float number types and rounds away from zero for the other number types.
Syntax
round(expression [, decimal_places])
Arguments
-
expression
— A number to be rounded. Can be any expression returning the numeric data type . -
decimal-places
— An integer value.-
If
decimal-places > 0
then the function rounds the value to the right of the decimal point. -
If
decimal-places < 0
then the function rounds the value to the left of the decimal point. -
If
decimal-places = 0
then the function rounds the value to integer. In this case the argument can be omitted.
-
Returned value:
- The rounded number of the same type as the input number.
Type: Float64
Example
SELECT round(1.1234);
Result:
┌─round(1.1234)─┐
│ 1e+00 │
└───────────────┘
other example
SELECT round(1.1234,2);
Result:
┌─round(1.1234, 2)─┐
│ 1.12e+00 │
└──────────────────┘
roundAge
Accepts a number. If the number is less than 17, it returns 17. Otherwise, it rounds the number down to a number from the set: 17, 25, 35, 45, 55. This function is specific to Yandex.Metrica and used for implementing the report on user age.
Syntax
roundAge(num)
Arguments
num
– The age.
Returned value
- A rounded value..
Type: UInt8
Example
SELECT roundAge(50);
Result:
┌─roundAge(50)─┐
│ 45 │
└──────────────┘
other example
SELECT roundAge(16), roundAge(17),roundAge(18);
Result:
┌─roundAge(16)─┬─roundAge(17)─┬─roundAge(18)─┐
│ 17 │ 17 │ 18 │
└──────────────┴──────────────┴──────────────┘
roundDown
Accepts a number and rounds it down to an element in the specified array. If the value is less or greater than the bound, the lowest or greatest bound is returned.
Syntax
roundDown(number, array)
Arguments
number
– The number.array
– The array.
Returned value
- The result of roundng.
Example
SELECT roundDown(2, [6, 7, 8]);
Result:
┌─roundDown(2, [6, 7, 8])─┐
│ 6 │
└─────────────────────────┘
roundDuration
Accepts a number
. If the number is less than one, it returns 0. Otherwise, it rounds the number down to numbers from the set: 1, 10, 30, 60, 120, 180, 240, 300, 600, 1200, 1800, 3600, 7200, 18000, 36000. This function is specific to Yandex. Metrica and used for implementing the report on session length.
Syntax
roundDuration(number)
Arguments
x
– The number.
Returned value
- The result of rounding.
Example
SELECT roundDuration(230);
Result:
┌─roundDuration(230)─┐
│ 180 │
└────────────────────┘
roundToExp2
Accepts a number
. If the number
is less than one, it returns 0. Otherwise, it rounds the number
down to the nearest (whole non-negative) degree of two.
Syntax
roundToExp2(number)
Arguments
number
– The number.
Returned value
- The result of rounding.
Example
SELECT roundToExp2(31);
Result:
┌─roundToExp2(31)─┐
│ 16 │
└─────────────────┘
sin
The sine.
Syntax
sin(x)
Arguments
x
– The radians.
Returned value
- Return radians.
Type: Float64
Example
SELECT sin(pi()/2)
Result:
┌─sin(divide(pi(), 2))─┐
│ 1e+00 │
└──────────────────────┘
sqrt
Accepts a numeric argument and returns a Float64 number close to the square root of the argument.
Syntax
sqrt(x)
Arguments
x
– The number.
Returned value
- The square root.
Type: Float64
Example
SELECT sqrt(4);
Result:
┌─sqrt(4)─┐
│ 2e+00 │
└─────────┘
tan
The tangent.
Syntax
tan(x)
Arguments
x
– The radians.
Returned value
- Return radians.
Type: Float64
Example
SELECT tan(pi()/4);
Result:
┌─tan(divide(pi(), 4))──┐
│ 9.999999999999999e-01 │
└───────────────────────┘
Note: the result has particular precision, it probably will be fixed with next minor release.## tgamma
Computes the gamma function of arg.
Syntax
tgamma(x)
Arguments
x
– The number.
Returned value
- The result of calculation.
Example
select tgamma(10);
Result:
┌─tgamma(10)─────────────┐
│ 3.6287999999999994e+05 │
└────────────────────────┘
trunc
Returns the round number with largest absolute value that has an absolute value less than or equal to x
‘s. In every other way, it is the same as the ’floor’ function (see above).
Syntax
trunc(x[, N])
truncate(x[, N])
Arguments
x
– The number.N
- The integer of rounding decimal place.
Returned value
- The rouded number.
Example
SELECT trunc(100.11, 1)
Result:
┌─trunc(100.11, 1)─┐
│ 1.001e+02 │
└──────────────────┘
truncate
Removes all data from a table. When the clause IF EXISTS
is omitted, the query returns an error if the table does not exist.
The TRUNCATE
query is not supported for View, File, URL, Buffer and Null table engines.
Syntax
TRUNCATE TABLE [IF EXISTS] [db.]name [ON CLUSTER cluster]
Arguments
name
– The table name.[IF EXISTS]
- Optional, the query returns an error if the table does not exist.[db.]
- Optional, the database name.[ON CLUSTER cluster]
- Optional, the cluster name.
Returned value
- N.A.
Example
CREATE TABLE test.test_truncate (id Int32) ENGINE = CnchMergeTree ORDER BY id;
INSERT INTO test.test_truncate(id) VALUES(1),(2),(3),(4),(5); -- insert 1,2,3,4,5 to table
SELECT * FROM test.test_truncate; -- check the date before truncate
┌─id─┐
│ 1 │
│ 2 │
│ 3 │
│ 4 │
│ 5 │
└────┘
TRUNCATE TABLE test.`test_truncate`
SELECT * FROM test.`test_truncate`
Result:
Updated over 2 years ago